K-x^2+6x+1=0

Simple and best practice solution for K-x^2+6x+1=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for K-x^2+6x+1=0 equation:



-K^2+6K+1=0
We add all the numbers together, and all the variables
-1K^2+6K+1=0
a = -1; b = 6; c = +1;
Δ = b2-4ac
Δ = 62-4·(-1)·1
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$K_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$K_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$
$K_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{10}}{2*-1}=\frac{-6-2\sqrt{10}}{-2} $
$K_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{10}}{2*-1}=\frac{-6+2\sqrt{10}}{-2} $

See similar equations:

| 2q-4=q+10 | | 2,000(x−0.03)=6,000 | | 4x+9(x+1)+2=11-6x | | X+10=-7x+10 | | 12•(3x+1)=336 | | 0.85xC=55.25 | | -3+5u=6u−9 | | 13/7x=-1 | | 7y^2+10y+3=0 | | 7x-(2x+7)=6x-35 | | -6.9=u/3-2.1 | | 40=1/241+x | | 5(x−9)=−15 | | 25x^2+8=90x | | 20x-4=20x-4 | | 3^x+3^x-1+3^x-2=13 | | 19r-100=-45r-108 | | 7=v/8.6 | | 2.4x+9.6=22.2 | | -8b+5=-9−10b | | -0.8x=21 | | 124/x=x+27 | | y^2+5y+70=0 | | x^2-250x-4900=0 | | 52=-16x | | 1-5y=3-6y | | 8.1x=153.9 | | -(5/13)x=35 | | −​4/1​​a−4=​7/4​​a−3 | | 5.8-1.2x+9=7.5+2.6 | | 12-6x=-2 | | 3x-2/5=2x+3/7 |

Equations solver categories